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Abstract

A 1-bit serial processor designed for a parallel computer architecture is described.

This processor is used to develop a massively parallel computational engine, with a

single instruction-multiple data (SIMD) architecture. The computer is simulated and

tested to verify its operation and to measure its performance for further development.

1 Introduction

Recent trends for the design of massively parallel computers have shifted from em-

phasis on the design of single instruction-multiple data (SIMD) machines to multiple

instruction-multiple data (MIMD) machines. However, it is our contention that the

trend is based on inappropriately drawn conclusions. Because of the early rush to build

SIMD computers, inadequate attention was devoted to exploring the full potential of

these architectures. Current MIMD machines that are based on commercially avail-

able processors lack the scalability originally intended for massively parallel computers.

These computers employ processors on the order of a hundred or a thousand rather

than a million, and yet consume large amounts of power and space. One of the main

criticisms of these systems is the use of processors designed for workstation rather than

supercomputer applications. Placing such processors in a supercomputer environment

has reduced the individual performance of each processor to a fraction of their capa-

bilities and has required the use of co-processors to aid them adapt to the multi-node
environment.

The objective of our project is to design a massively parallel SIMD architecture

with greater than a million processors. A low power, 1-bit serial processor specifically

designed for a SIMD architecture will be utilized.



2 1-Bit Serial Processing Element

As shown in Figure 1, the processing element consists of a bit serial arithmetic and

logic unit (ALU), a distributed bit serial RAM, and a 2-dimensional router. The ALU
is further divided into:

• Computational logic

• Three registers or D-flip-flops - an accumulator register (h), a carry register (C),

and a mask register (M)

• Transmission gates
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Figure 1: Registers and ALU of PE

In this design, a half adder is the fundamental component of the ALU. The results

of such operations may be stored in either the accumulator or carry register. The

use of a shift register may considerably reduce the execution time for functions such

as multiplication. However, to reduce the size of the processing element by at least

a factor of five, a shift register is not used. The mask register M enables certain

processors to perform a given operation while the others are "masked" and therefore

do not execute that operation. There are sixteen control signals from which functions

may be constructed :

• RR- Read RAM



- 0- 0isled toPE
- 1- loadvaluefrom memoryaddress

• LR- Load RAM

• RI- Read RAM Inverted

• MI - Mask Invert signal

• LA - Load A Register (Accumulator)

• MA - Mask load of A

• LC - Load C Register (Carry)

• MC - Mask load of C

• LM - Load M Register (Mask)

• MM - Mask load of M

• RC - Read from Carry

- 0 - Read from A

- 1 - Read from C

• OC - OR with Carry
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Figure 2: Logic for PE Local Control Signals



• AC - LoadA/C input busesfrom:

- 00 - FromRAM (FR)
- 01 - FromAdder (FA)
- 10- Activate Router(RT)
- 11- ActivateGlobaloperationsnetwork(GB)

AGO
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[ -C3 ACO

FA _ ACt

ACO

ACl

Figure 3: Logic for PE Network Level Control Signals

• DR - Router Direction

- 0 - Send Data To North and To West

- 1 - Send Data To South and To East

• IO - Controls external I/O via router

So/Ea

C_

No/We _ DR

Figure 4: Logic for PE Router Control Signals

Figures 2, 3, and 4 show the logic used to implement the different control signals

listed. Control signals for the PE may originate from a controller chip, a compiler

or control memory. In addition to the 16 control signals, there are 10 AA bits that

represent the address space of the distributed RAM. Communication with RAM is

controlled by RR, RC and LR. When RR=I, data in a selected memory address appears

on the data bus. RC controls where the data on the RAM write bus comes from, and

when LR=I, the selected memory address is written to.

The signals LA, LC and LM cause the A,C, and M registers to load respectively.

While the signals MA, MC and MM cause these same registers to be masked. Hence,

if LA=0 and MA=0 then the A register will not be loaded from its input bus. If LA=l

and MA=0, then the A register will be unconditionally loaded. On the other hand, if

LA=0 and MA--1 then the A register will be conditionally loaded from its input bus if

and only if the corresponding M register contains the value of 0. If LA=I and MA=I



then the A registerwill only be loadedif the correspondingM registercontainsthe
value1. This set of conditionsalsoholdtrue for the signalpairsLC/MC, LM/MM
and RI/MI. Unlike the othersignals,RI/MI do not controlthe loadingof a register.
Instead,they control the inversionof valuescomingfrom RAM. If RI--1, then the
output of RAM is inverted,and MI causesa conditionalinversiondependingon the
valueof M.

Designedfor CMOS implementation, the processor uses transmission gates to guar-

antee that there are no conflicting signals, and that no combination of control signals

will produce a short from the power supply to the ground of any device.

There are three levels from which the processing element may receive and transmit

data. A model is of this configuration is shown in Figure 5. These levels are:

1. Local RAM and ALU

2. Router Network

3. Global Operation Network.

Global Operation

Level 3 - nsfer

Level 2 _j_

_ Local Operation

Figure 5: Three Levels of PE Network Operation

Each processing element may only communicate with one of levels 2 and 3 at a

time. The first level is used to perform operations on data stored in the bit serial RAM

or any one of the registers. The second level is for inter-processor data transfer and

external I/O, and the third level is for global functions and operations. The signals

AC0 and AC1 control which level data is loaded from and sent to. If ACI=0, then

data transfer is local (ALU or RAM). When ACI=I, data is transferred from levels 2

and 3. When AC0=0 the data is sent and received from the router, and when AC0=I

the data is sent through the global operations network.



3 Communication Network and Router

The router network allows processors to transmit and receive information from each

other. Any data received may be stored locally and operated on. As mentioned above,

the router is a two-dimensional mesh shown in Figure 6. This means that each element

may communicate directly with any of its four closest neighbors - north, south, east or
west.

PE 9

PE 1

PE 4

Figure 6: Block Representation of a 3x3 Toroidal 2-D Mesh of Bit Serial PE's

Since there are two registers available to store data, we may use both for commu-

nication purposes. The a_cumulator register is chosen to accommodate east-west data

transfer, while the carry register is used for north-south data transfer. This scheme

optimizes the use of a two-dimensional router, and if need be, can allow for two sets of

data to be transmitted at a time. For example one command may be "send carry reg-
ister contents north" or it may be "send carry register contents north and accumulator
register contents west."

Each processing element is connected to two routing switches - one switch for north-

south communication and another for east-west communication. As shown in Figure 7,

each switch consists of four transmission gates in a square formation, where opposing

gates are controlled by a common signal - So/Ea and No/We. The corners of each

switch are connected to four data transmission lines as shown in Figure 8 - input of a

register, output of a register, and the switches from the two adjacent processors. The

control signals dictate which transmission gates are on and hence which direction the

data is transmitted. When signal RT=I, then the router is activated. The DR signal

controls the direction of data transfer as seen in Figure 4. When DR=0, values in the

C register move south, and values in the A register move east. When DR=l, values
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in the C register move north, and values in the A register move west. Figure 8 is an

example of data travelling north and west.
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Figure 8: Three PE's Connected with a 2-D Router Switches

4 Global Operations

Often it is necessary to inquire about the status of all the processors. These types of

operations are described as global operations, and require the use of an independent
network. This is the third level network for data transmission that consists of a linear

mesh of OR gates. Figure 9 shows one row of OR gates for N processors. The areas

surrounded by a dashed square, are blocks repeated for each processor in the row. A



similar set up is used for columns of processors, and connect the C register and the

north/south routing switches. The register contents of each PE are ORed and the

result of the operation placed in each processor.

It may be seen in Figure 9, that on the edges of the mesh, a series of external data

lines have been added to allow for external I/O. I/O may be accessed from either the

east or south ends of the mesh. When the external I/O is activated, the router network

remains on, but any toroidal connect must be removed to allow data to enter from only

one side of the mesh.
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Figure 9: Global OR Function Network

The global AND function may also be implemented using the global OR network.

This is done by inverting the inputs to the OR gates, and inverting the output. The

inversion process may be done locally by each processor. This eliminates the need for

a separate network.

5 Suggested Operating Parameters

Parameters such as the number of floating point operations per second (FLOPS), in-

structions per second and execution speed are difficult to describe without using a

working prototype. The following is an approximation to these parameters assuming

we have 1 million processors in a 1000xl000 2-dimensional mesh and a clock running

at 100MHz. It is also assumed that the delay associated with a command reaching a

processor from the control unit is the same for all processors.

The commands multiply and processor-to-processor crossover exchange are the two

longest commands to execute, each requiring 11 clock cycles for one bit. In other words,

one bit requires a total of 0.11# seconds to be processed. For a million processors, this

produces 9.09 TeraFLOPS. To achieve PetaFLOPS operation, at least 110 million

processors would be required.

The band-width of such a mesh would be 1000 bits in any one direction. For a bit

to travel to its closest neighbor would require 3 clock cycles to complete. The worst

case condition in a torus connected mesh, would require a data bit to travel 1000 steps



(500 for each dimension). Hence it would take 30# seconds to transfer data, producing

a slowest data transfer rate of 33 million bits per second.

6 Progress to Date

The group has successfully simulated a 3x3 toroidal mesh of processing elements using

circuit design software. The simulation included all local operations. In addition, the

router and global networks have been designed, and we are currently in the process of

simulating them. Plans are to:

• Simulate a larger network to measure propagation delay for a millions processors

- this requires the use of a more powerful software package and/or computer.

• Begin to develop a VLSI prototype - test processor performance and reliability
under real conditions.

• Replace the global OR with a tree structure - speed global functions

• Add more global functions such as XOR, ADD

• Develop a fault detection and avoidance system - detect faulty processors and

bypass them on the network

• Develop a multiple controller SIMD structure - this may be a solution to propa-

gation delay.

9



Appendix

A Primitive Function Descriptions

The following section contains functions and the lines of code needed to describe their

execution. Each line of code consists of a list of signals, a memory address location

(hA), and a comment line (comment lines start with "//") or the loop statements

"repeat" and "while (i)." It is assumed that "repeat" does not take any time, and

"while (i)" is an end of loop comparison combined with the last instruction of the loop.

All other lines of code take one clock cycle to execute. If a signal is represented in

the line of code, then it takes on a value of 1, otherwise it is 0 for that instruction.

Names written in lower case, such as opl, op2 and sz, are counter and register values

generated by the array control unit, when an instruction is being executed by the array.

The notation AA(opl++) means address "opl" will be used will be used in the current

instruction to access array memory address AA, while it is being incremented in the
control unit.

Addition:

LC // clear C

repeat

RR ACO RC LC LA

RR ACO OC LC LA

LR

while (in)

Subtraction:

RI LC // set C

repeat

RR ACO RC LC LA

RR ACO OC LC LA RI

LR

while (in)

hh(opl++) in-- // Ist half add

hh(op2++) // 2nd half add

AA(op3++)

AA(opl++)

hh(op2++)

AA(op3++)

in-- // ist half add

// 2nd half sub

10



Multiplication:

// opl -- LSB of multiplier

// op2 -- LSB of multiplicand

// op3 -- LSB of product

// szl -- size of multiplier

// sz2 -- size of multiplicand

// load multiplicand into product

// load A with ist bit of multiplier

RR LA AA(opI++) (sz->in) (szl->inn) (op3->tp3) (op2->tp2)

// Load M from A, clear A and C

LM LR LC (op3++) (inn--)

repeat // load product masked

RE LAMA AA(tp2++) (in--)

LR AA(tp3++)

while (in)

LR RC LA LC AA(tp3)

// perform multiply

repeat

RR LR

LM

repeat

RR ACO RC LC LA

RR ACO OC LC MC LAMA

LR

while (in)

LR RC LA LC

while (inn)

AA(opl++) (sz->in) (op3->tp3) (op2->tp2)

(op3++) (inn--)

// add in multiplicand masked

AA(tp3++) in--

AA(tp2++)

AA(tp3++)

AA(tp3)

11



Divide:

// opl -- LSB of divisor

// op2 -- MSB of dividend

// szl -- size of divisor

// sz2 -- size of dividend

// clear (szl) bits more significant than op2

LA ((op2+1)->tp2) (szl->inl)//clear A

repeat

LR AA(op2++) (in1--)

while (inl)

LA RR AA(op2) (op2->tp2) (sz2->in2) (opl->tpl)

repeat

LC LM LR AA(tp2) (szl->inl) (op2->tp2) in2--

repeat

RR ACO RC LC LA

RR ACO RC LC LA RI MI

LR

while (inl)

RI ACO LA (op2--) (opl->tpl)

while (in2)

LR AA(tp2)

AA(tp2++) inl--

AA(tpI++)

AA(tp2++)

// op2

// tp2

-- LSB of remainder (size=szl)

-- LSB of quotient (size=sz2)

12



Logic Functions

And:

repeat

RR LC

RR RC ACO LC

RC LR

while (in)

Or:

RI LC

repeat

RR LC

RR OC ACO LC

RC LR

while (in)

Xor:

repeat

RR LA

RR ACO LA

LR

while (in)

Not:

repeat

RR RI LA

LR

while (in)

AA(opl++) in--

AA(op2++)

AA(opI++)

AA(opI++) in--

AA(op2++)

AA(opl++)

AA(opI++) in--

AA(op2++)

AA(opI++)

AA(opI++) in--

AA(op2++)

iS



Comparison

// opl -- MSB of Ist operand

// op2 -- MSB of 2nd operand

// C -- greater than flag

// M -- equal flag

LA Kl

repeat

LC MC LAMA RR LM

RR RI LAMA

while(sz)

AA(opl--) sz--

AA(op2--)

Equal:

// A -- result flag

perform Comparison

RI MI LA

GreaterThanOrEqual:

// A -- result flag

perform Comparison

perform Equal

RC ACO MA

LessThanOrEqual:

// A -- result flag

perform Comparison

perform Equal

RI KC ACO MA

NotEqual:

// A -- result flag

perform Comparison

MI LA

GreaterThan:

// A -- result flag

perform Comparison

perform NotEqual

RC ACO LAMA

LessThan:

// A -- result flag

perform Comparison

perform NotEqual

RI RC ACO LAMA

14



Memoryto MemoryMoves:

Move:
// opl -- LSB of source

// op2 -- LSB of destination

repeat

LA RR AA(opl++) sz--

LR AA(op2++)

while (sz)

Move (masked):

// opl -- LSB of source

// op2 -- LSB of destination

// ms -- exchange mask

LA RR

LM

repeat

LA RR

LAMA RR

LR

while (sz)

AA(ms)

AA(op2) sz--

AA(opl++)

AA(op2++)

Memory to Memory Exchange:

Exchange:

// opl -- location I

// op2 -- location 2

repeat

RR LA

RR LC

LC RC

LR

while (sz)

AA(opl) sz--

AA(op2)

AA(opI++)

AA(op2++)

Exchange (masked):

// opl -- location 1

// op2 -- location 2

// ms -- exchange mask

LA RR AA(ms)

LM

repeat

RR LAMA MC

RR MA LC MC

LR RC

LR

while (sz)

AA(opl) sz--

AA(op2)

AA(opI++)

AA(op2++)

15



Processor to Processor Moves:

MoveN:

// opl -- LSB of source

// op2 -- LSB of destination

// sz -- size of operands

// ds -- distance

repeat

LC,RR

repeat

LC,ACI ds--

// LC,AC1,DR

while (ds)

LR,RC AA(op2++)

while (sz)

AA(opl++) sz--

//if moving north

//if moving south

MoveW:

// opl -- LSB of source

// op2 -- LSB of destination

// sz -- size of operands

// ds -- distance

repeat

LA,RR

repeat

LA,ACl

// LA,AC1,DR

while (ds)

LR AA(op2++)

while(sz)

AA(opl++) sz--

ds-- // if moving west

// if moving east

16



Processor to Processor Moves (masked):

MoveN (masked):

// opl -- LSB of source

// op2 -- LSB of destination

// sz -- size of operands

// ds -- distance

// ms -- exchange mask

LA RR AA(ms)

LM

repeat

LC RR AA(opl++) sz--

repeat

LC ACI ds--

// LC ACI DR

while (ds)

MA RR AA(op2)

LR AA(op2++)

while (sz)

//if moving north

//if moving south

// ds

// ms

LA RR

LM

repeat

MoveW (masked):

// opl -- LSB of source

// op2 -- LSB of destination

// sz -- size of operands

-- distance

-- exchange mask

AA(ms)

LA RR

repeat

LA ACl

// LA AC1 DR

while (ds)

MC RR AA(op2)

LR RC AA(op2++)

while(sz)

AA(opI++) sz--

ds-- // if moving west

// if moving east

17



Processor to Processor Exchange (masked):

ExchangeNS (masked):

// opl -- LSB of source

// sz -- size of operands

// ds -- distance

// nm -- northern mask

// em -- exchange mask

LC,RR AA(ms)

LM

repeat

LC,RR

repeat

LC,AC1

while (dss)

RI,ACO,LC

LC,RR AA(opl)

repeat

LC,ACI,DR

while (ds)

LC,RR

LM

LC,MC,ACO

LC,RR

LM

MC,RR,RC

LR

while (sz)

AA(opl) sz-- (ds->dss) II load C

dss-- // north

// move C to A

(ds->dss) // load C again

ds-- I/ south

AA(nm) // load western mask

// load C from A in northern PEs

AA(em) // load exchange mask

// load C masked if not exchanging

AA(opl++) // store A

18



Processor to Processor Crossover Exchange:

CrossOverNS:

// opl -- LSB of source

// op2 -- LSB of source

// sz -- size of operands

// ds -- distance

// ms -- northern mask

LC,RR AA(ms)

LM

repeat

LC,RR

repeat

LC,ACI

while (dss)

RI,ACO,LA

LC,RR AA(op2)

repeat

LC,ACI,DR

while (ds)

LC,MC,RC AA(opl)

LR AA(op1++)

LA,MA AA(op2)

LR AA(op2++)

while (sz)

AA(opl) sz-- (ds->dss)

dss--

(ds->dss)

ds--

// load A opl

// north

// move C to A

// load C op2

// south

// load C from AA(op1)
// store C

// load A from AA(op2)

// store A

19



Global Operations:

Global OR:

// opl -- parallel operand

// op2 -- pointer into scalar operand register (SS)

repeat

LC RR AA(opl++)sz--

ACO ACI SS(op2++)

while(sz)

repeat

RC FA AA(opl++)sz--

ACO ACI SS(op2++)

while(sz)

2O



B Simulation Results and Timing

The following is an example of a simulation for the ADD function. Figure 10 is the

timing diagram. Two binary numbers, 1 and 0, are added in that sequence, and the

result is stored in memory. The ToRAM line shows the result of this addition 01.
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AIn

Cout

Gin

Aout

! I/O

I10
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MM
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MA
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RT
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[]R

No/We
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Ct.K
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AG0
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AC1

I I I

_J

2?0 4?oI I I I i I i I t l i I I I

----L_._J_

LJ

_J'_...A'-LA--2._%.J '

__.j=-----=-_

Figure 10: Simulation Timing Diagram for ADD function

The process takes 4 clock cycles to complete - compare this to the primitive com-

mand description, which is composed of 4 command lines each requiring a clock cycle

to complete.
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Figure 11, represents a continuous addition process, where 1 is repeatedly added to

itself. The result may be seen as a 10101010... sequence.

2('0 4_)0I I I I I I I I I ! I I | I I I

FromRAM ' _ _ :
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Figure 11: Simulation Timing Diagram for continuous ADD function
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